Self-aspirating and Gas-liquid Dispersing Impellers

20230332612 · 2023-10-19

    Inventors

    US classification

    • 416/90R

    Cpc classification

    International classification

    Abstract

    Disclosed are self-aspirating and gas-liquid dispersing impellers, belonging to the technical field of impellers. The self-aspirating and gas-liquid dispersing impellers include an stirring shaft, a hub, a disc and blades; the hub is coaxially sleeved on the stirring shaft, the disc is connected to the hub, a plurality of blades which extend in the radial direction are arranged on the circumferential side face of the disc, and a gas inlet channel is formed in the disc; each of the plurality of blades includes an upper curved surface and a lower curved surface, and a rotary cavity is embedded between the upper curved surface and the corresponding lower curved surface; and one side of the rotary cavity is a liquid facing surface. The impeller of the disclosure has the dual functions of radial gas-liquid dispersing and axial fluid mixing, effectively promotes microscopic mass transfer and macroscopic fluid delivery between gas and liquid phases.

    Claims

    1. Impellers, comprising a stirring shaft (1), a hub (2), a disc (3) and blades (4); the stirring shaft (1) being a hollow stirring shaft, the hub (2) being coaxially sleeved on the stirring shaft (1), the disc (3) being connected to the hub (2), a plurality of blades (4) which extend in the radial direction being arranged on the circumferential side face of the disc (3), and a gas inlet channel (31) being formed in the disc (3); each of the plurality of blades (4) comprising an upper curved surface (41) and a lower curved surface (42), a rotary cavity (50) being embedded between the upper curved surface (41) and the corresponding lower curved surface (42), and the rotary cavity (50) communicating with the hollow stirring shaft (1) through the gas inlet channel (31); and one side of the rotary cavity (50) is a liquid facing surface (46), the other side of the rotary cavity is a liquid backing surface (45), a liquid inlet channel (49) is formed in the liquid facing surface (46), and the liquid inlet channel (49) communicates with the corresponding rotary cavity (50).

    2. The impellers according to claim 1, wherein a vent groove (21) is formed in an inner side of the hub (2), and a side hole (12) is formed in one side of the stirring shaft (1); and an outer side of the vent groove (21) communicates with the gas inlet channel (31) of the disc (3), and the inner side of the vent groove (21) communicates with the side hole (12) of the stirring shaft (1).

    3. The impellers according to claim 2, wherein sealing rings (11) are further arranged between the stirring shaft (1) and the hub (2), the number of the sealing rings (11) is two, the side hole (12) and the vent groove (21) are positioned between two sealing rings (11), and the disc (3) is connected to the plurality of blades (4) in a welded or detachable manner.

    4. The impellers according to claim 3, wherein projections of upper curved surfaces (41) and lower curved surfaces (42) of the plurality of blades (4) in a plane of the disc (3) are rectangular, fan-shaped or trapezoidal; the upper curved surfaces (41) close to the directions of the liquid facing surfaces (46) gradually slope towards the horizontal plane, and the upper curved surfaces (41) close to the directions of the liquid backing surfaces (45) form an inclination angle of 10-60 degrees with a horizontal plane; and the lower curved surfaces (42) close to the directions of the liquid facing surfaces (46) form an inclination angle of 10-45 degrees with a horizontal plane, and the lower curved surfaces (42) close to the directions of the liquid backing surfaces (45) gradually slope towards the horizontal plane.

    5. The impellers according to claim 4, wherein the rotary cavity (50) is a single truncated cone cavity (47) or a combination of a cylindrical cavity (48) and a truncated cone cavity (47), and a cross-sectional area of an outer side end face of the rotary cavity (50) is smaller than that of an inner side end face.

    6. The impellers according to claim 5, wherein each of the plurality of blades (4) further comprises an outer side face (43) and an inner side face (44), the outer side face (43) and the inner side face (44) are planes or cylindrical curved surfaces, the liquid facing surfaces (46) are configured to guide liquid to enter the plurality of blades (4), the angle between the liquid facing surface (46) and the plane of the disc (3) is 60-90°, and the upper curved surface (41) and the corresponding lower curved surface (42) converge on the corresponding liquid backing surface (45).

    7. The impellers according to claim 6, wherein when the rotary cavity (50) is a combination of the cylindrical cavity (48) and the truncated cone cavity (47), the ratio of a diameter of the outer side end face to a diameter of the inner side end face of the rotary cavity (50) is 0.4-0.9, the ratio of a length of the rotary cavity (50) to the diameter of the inner side end face is 1.2-4, the ratio of a height of the truncated cone cavity (47) to the diameter of the inner side end face of the rotary cavity (50) is 0.2-1, and the ratio of a width of each of the plurality of blades (4) to the length of the rotary cavity (50) is 1-2; and when the rotary cavity (50) is the single truncated cone cavity (47), the ratio of the diameter of the outer side end face to the diameter of the inner side end face of the rotary cavity (50) is 0.5-0.9, and the ratio of the length of the rotary cavity (50) to the diameter of the inner side end face is 1.5-4.

    8. The impellers according to claim 7, wherein the cross-sectional area of the liquid inlet channel (49) at the end adjacent to the liquid facing surface (46) is larger than that of the end adjacent to the rotary cavity (50), the height of the liquid inlet channel (49) at the end adjacent to the corresponding liquid facing surface (46) is 0.2-0.75 of the diameter of the inner side end face of the corresponding rotary cavity (50), the height of the liquid inlet channel (49) at the end adjacent to the cylindrical cavity (48) is 0.1-0.4 of the diameter of the inner side end face of the corresponding rotary cavity (50).

    9. The impellers according to claim 8, wherein the ratio of the diameter of the gas inlet channel (31) to the diameter of the outer side end face of the rotary cavity (50) is 0.05-0.4.

    10. The impellers according to claim 9, wherein the number of the plurality of blades (4) is 2-8, the plurality of blades (4) are evenly distributed along the circumference of the disc (3), and the ratio of the length of the rotary cavity (50) to the diameter of the disc (3) is 0.2-0.8.

    Description

    BRIEF DESCRIPTION OF FIGURES

    [0022] FIG. 1 is a perspective view of an impeller according to example 1;

    [0023] FIG. 2 is a front sectional view of the impeller according to example 1;

    [0024] FIG. 3 is a top view of the impeller according to example 1;

    [0025] FIG. 4 is a sectional view taken along A-A direction of FIG. 3;

    [0026] FIG. 5 is a perspective view of the impeller according to example 2;

    [0027] FIG. 6 is a front view of the impeller according to example 2;

    [0028] FIG. 7 is a top view of the impeller according to example 2;

    [0029] FIG. 8 is a sectional view taken along B-B direction of FIG. 7;

    [0030] FIG. 9 is a sectional view taken along C-C direction of FIG. 7;

    [0031] FIG. 10 is a perspective view of the impeller according to example 3;

    [0032] FIG. 11 is a front sectional view of the impeller according to example 3;

    [0033] FIG. 12 is a perspective view of the impeller according to example 4; and

    [0034] FIG. 13 is a perspective view of the impeller according to example 4 from another perspective.

    [0035] Reference numerals: 1—stirring shaft; 2—hub; 3—disc; 4—blade; 11—sealing ring; 12—side hole; 21—vent groove; 31—gas inlet channel; 41—upper curved surface; 42—lower curved surface; 43—outer side face; 44—inner side face; 45—liquid backing surface; 46—liquid facing surface; 47—truncated cone cavity; 48—cylindrical cavity; 49—liquid inlet channel; 50—rotary cavity; and 51—discharge back bend.

    DETAILED DESCRIPTION

    [0036] In order to make the objects, technical solutions and advantages of the disclosure more apparent, the disclosure is further described in detail with reference to the following examples and the accompanying drawings. Where identical components are represented by the same reference numerals. It should be noted that the words “front”, “rear”, “left”, “right”, “upper” and “lower” used in the following description refer to directions in the drawings. The terms “inner” and “outer” are used to refer to directions toward and away from, respectively, the geometric center of a particular component.

    Example 1

    [0037] Self-aspirating and gas-liquid dispersing impellers, as shown in FIG. 1 to FIG. 4, include a stirring shaft 1, a hub 2, a disc 3 and blades 4. The stirring shaft 1 is a hollow stirring shaft. The hub 2 is coaxially sleeved on the stirring shaft 1. The disc 3 is connected to the hub 2. A plurality of blades 4 which extend in the radial direction are arranged on the circumferential side face of the disc 3. A gas inlet channel 31 is formed in the disc 3. Each of the plurality of blades 4 includes an inclined upper curved surface 41 and an inclined lower curved surface 42. A rotary cavity 50 is embedded between the upper curved surface 41 and the corresponding lower curved surface 42. One side of the rotary cavity 50 is a liquid facing surface 46. The other side of the rotary cavity is a liquid backing surface 45. The rotary cavity 50 communicates with the stirring shaft 1 through the gas inlet channel 31.

    [0038] Further, each of the plurality of blades 4 includes an upper curved surface 41, a lower curved surface 42, an outer side face 43, an inner side face 44, a liquid backing surface 45 and a liquid facing surface 46. The curved surfaces are intersected to form a main body contour edge line of each of the plurality of blades 4. An included angle between each of the inner side face 44 and the outer side face 43 and a plane of the disc 3 is 90°.

    [0039] As shown in FIG. 2, the axis of the rotary cavity 50 is perpendicular to the axis of the stirring shaft 1. An inner side end face of the rotary cavity 50 communicates with the hollow stirring shaft 1 through the gas inlet channel 31. As shown in FIG. 4, a liquid inlet channel 49 is formed in the liquid facing surface 46. The liquid inlet channel 49 communicates with the corresponding rotary cavity 50. A cross-sectional area of an outer side end face of the rotary cavity 50 is smaller than that of the inner side end face. Gas-liquid mixture is radially discharged out of the plurality of blades 4 through the outer side end face of the rotary cavity 50.

    [0040] As shown in FIG. 4, the upper curved surfaces 41 close to the directions of the liquid facing surfaces 46 gradually slope towards the horizontal plane. The upper curved surfaces 41 close to the directions of the liquid backing surfaces 45 form an inclination angle of 10-60 degrees with a horizontal plane. The lower curved surfaces 42 close to the directions of the liquid facing surfaces 46 form an inclination angle of 10-45 degrees with a horizontal plane. The lower curved surfaces 42 close to the directions of the liquid backing surfaces 45 gradually slope towards the horizontal plane.

    [0041] Further, the liquid facing surfaces 46 are configured to guide liquid to enter the plurality of blades 4. The angle between the liquid facing surface 46 and the plane of the disc 3 is 60-90°. The liquid backing surfaces 45 can eliminate a cavitation effect. The upper curved surface 41 and the corresponding lower curved surface 42 converge on the corresponding liquid backing surface 45. Preferably, the upper curved surface 41 and the corresponding lower curved surface 42 converge on one straight line in the direction of the corresponding liquid backing surface 45. The two sides of the liquid backing surface 45 have the same inclination. The two sides of the liquid facing surface 46 have the same inclination.

    [0042] Further, the rotary cavity 50 includes a cylindrical cavity 48 and a truncated cone cavity 47. The ratio of a diameter d.sub.T of the outer side end face to a diameter d.sub.C of the inner side end face of the rotary cavity 50 is 0.4-0.9. The ratio of a length L.sub.1+L.sub.2 of the rotary cavity 50 to the diameter d.sub.C of the inner side end face is 1.2-4. The diameter of the end face (namely the diameter of the inner side end face) of the side, close to the stirring shaft 1, of the truncated cone cavity 47 is the same as the diameter of the corresponding cylindrical cavity 48. The ratio of a height L.sub.2 of the truncated cone cavity 47 to the diameter d.sub.C of the inner side end face of the corresponding rotary cavity 50 is 0.2-1. The length of each of the plurality of blades 4 is slightly greater than the length L.sub.1+L.sub.2 of the corresponding rotary cavity 50. The ratio of a width W of each of the plurality of blades 4 to the length L.sub.1+L.sub.2 of the corresponding rotary cavity 50 is 1.0-2.0.

    [0043] Further, a liquid inlet channel 49 is formed in each of the plurality of blades 4 in the direction of the corresponding liquid facing surface 46, and tangentially communicates with the corresponding rotary cavity 50. The cross-sectional area of the end, close to the corresponding liquid facing surface 46, of the liquid inlet channel 49 is greater than that of the end close to the corresponding rotary cavity 50. The height H.sub.W of the end, positioned on the corresponding liquid facing surface 46, of the liquid inlet channel 49 is 0.20-0.75 of the diameter d.sub.C of the inner side end face. The height H.sub.L of the end, close to the corresponding cylindrical cavity 48, of the liquid inlet channel 49 is 0.1-0.4 of the diameter d.sub.C of the inner side end face of the corresponding cylindrical cavity. The length L.sub.3 of the transverse vertical section of the liquid inlet channel 49 is smaller than the length L.sub.1 of the corresponding cylindrical cavity 48. The ratio of the length of the transverse vertical section of the liquid inlet channel to the length of the corresponding cylindrical cavity is 0.45-0.95, and is preferably 0.7-0.9.

    [0044] Further, one end of the gas inlet channel 31 is connected to the hollow stirring shaft 1 by means of the disc 3 and the hub 2. The other end of the gas inlet channel 31 is connected to the insides of the rotary cavity 50 of the plurality of blades 4. The ratio of the diameter of the gas inlet channel 31 to the diameter of the outer side end face of the rotary cavity 50 is 0.05-0.4, and is preferably 0.1-0.25.

    [0045] Further, the disc 3 is perpendicular to the stirring shaft 1. The inner side and the outer side of the disc are respectively connected to the hub 2 and the plurality of blades 4. The gas inlet channel 31 is formed in the disc 3. The outer side of the disc 3 may be directly welded to the plurality of blades 4, or a blade pedestal is arranged on the disc 3, and then the disc is detachably connected to the plurality of blades 4 by means of each of the plurality of blades pedestal.

    [0046] Further, the inner side and the outer side of the hub 2 are respectively connected to the stirring shaft 1 and the disc 3. The vent groove 21 is formed in the inner side of the hub 2. The side hole 12 is formed in one side of the stirring shaft 1. The outer side of the vent groove 21 communicates with the gas inlet channel 31 of the disc 3. The inner side of the vent groove 21 communicates with the side hole 12 of the stirring shaft 1. The sealing rings 11 are further arranged between the stirring shaft 1 and the hub 2. The stirring shaft and the hub are sealed by means of the sealing rings 11. The number of the sealing rings 11 is two. The side hole 12 and the vent groove 21 are positioned between the two sealing rings 11 to ensure communication between gas in the hollow stirring shaft 1 and the plurality of blades 4.

    [0047] Further, the number of the plurality of blades 4 of the impeller is 2-8, the plurality of blades 4 are evenly distributed along the circumference of the disc 3. Preferably, the number of the plurality of blades 4 is four. The plurality of blades 4 are arranged in a pushed-down manner. The ratio of the length L.sub.1+L.sub.2 of the rotary cavity 50 to the diameter d.sub.b of the disc 3 is 0.2-0.8, and is preferably 0.5-0.7.

    [0048] Further, the projections of the upper curved surfaces 41 and the lower curved surfaces 42 of the plurality of blades 4 in the plane of the disc 3 are rectangular.

    [0049] The operation conditions of the self-aspirating and gas-liquid dispersing impellers are as follows: the linear velocity of the tip of each of the plurality of blades 4 is greater than 2.0 m/s, liquid viscosity is smaller than 1000 mPa.Math.s, and the maximum size of solid particles is smaller than the lowest height of the liquid inlet channel 49. The gas-liquid mass transfer rate and efficiency of the impeller in an operation process are closely related to gas-liquid flow ratio. Liquid flow is mainly adjusted by means of the stirring rotation speed. Gas flow is pre-adjusted by means of the diameter dg of the gas inlet channel 31 and a gas inlet valve mounted on the stirring shaft 1.

    Example 2

    [0050] As shown in FIG. 5 to FIG. 9, the difference between this example and example 1 is that the projections of the upper curved surfaces 41 and the lower curved surfaces 42 of the plurality of blades 4 of this example in the plane of the disc 3 are fan-shaped. The widths of each of the plurality of blades 4 are defined by the central angle α of the sector, the radius r of the inner side face and the radius R of the outer side face. For example, the central angle of the fan α is 30-60 degrees, the width of the inner side face of each of the plurality of blades 4 is απr/180, and the width of the outer side face of each of the plurality of blades is απR/180. The upper curved surfaces 41 of the plurality of blades 4 close to the directions of the liquid facing surfaces 46 gradually slope towards the horizontal plane. The upper curved surfaces 41 close to the directions of the liquid backing surfaces 45 form an inclination angle of 10-60 degrees with a horizontal plane. Further, the inner side inclination of the upper curved surfaces 41 close to the directions of the liquid backing surfaces 45 is greater than the outer side inclination. The lower curved surfaces 42 close to the directions of the liquid facing surfaces 46 form an inclination angle of 10-45 degrees with a horizontal plane. The inner side inclination of the lower curved surfaces 42 close to the liquid facing surfaces 46 is greater than the outer side inclination. The lower curved surfaces 42 close to the directions of the liquid backing surfaces 45 gradually slope towards the horizontal plane.

    Example 3

    [0051] As shown in FIG. 10 and FIG. 11, the difference between this example and example 1 is that the projections of the upper curved surfaces 41 and the lower curved surfaces 42 of the plurality of blades 4 of this example in the plane of the disc 3 are trapezoidal. Namely, the rotary cavity 50 in this example is a single truncated cone cavity. The ratio of the diameter d.sub.T of the outer side end face of the rotary cavity 50 to the diameter d.sub.C of the inner side end face is 0.5-0.9. The ratio of the length L.sub.2 of the rotary cavity 50 to the diameter d.sub.C of the inner side end face is 1.5-4.

    [0052] Further, the radial vertical section of the liquid inlet channel 49 is parallelogram or trapezoid. The cross-sectional area of the end at the corresponding liquid facing surface 46, of the liquid inlet channel is larger while the cross-sectional area of the end, adjacent to the corresponding truncated cone cavity, of the liquid inlet channel tends to be small. The liquid inlet channel tangentially communicates with the corresponding truncated cone cavity. The liquid facing surface 46 is larger than that of the end adjacent to the rotary cavity 50, the height H.sub.W of the liquid inlet channel 49 at the end adjacent to the corresponding liquid facing surface 46 is 0.2-0.75 of the diameter d.sub.C of the inner side end face of the corresponding rotary cavity 50. The height H.sub.L of the liquid inlet channel 49 at the end adjacent to the cylindrical cavity 48 is 0.1-0.4 of the diameter d.sub.C of the inner side end face of the corresponding rotary cavity 50. The length L.sub.3 of the radial vertical section of the end, close to the corresponding truncated cone cavity, of the liquid inlet channel 49 is smaller than the length L.sub.2 of the corresponding truncated cone cavity. The ratio of the length of the radial vertical section of the end, close to the corresponding truncated cone cavity, of the liquid inlet channel to the length of the corresponding truncated cone cavity is 0.45-0.7.

    Example 4

    [0053] As shown in FIG. 12, the difference between this example and example 1 is that the outer side end face of each of the plurality of blades 4 of this example is connected to a discharge back bend 51 facing the corresponding liquid backing surface 45. The rotation plane of the discharge back bend 51 is parallel to the plane of the disc. The back-bending rotation angle is 40-90 degrees. By arrangement of the discharge back bends 51, gas-liquid mixture can be discharged out of the plurality of blades more quickly, higher negative pressure is formed inside the plurality of blades. The discharge back bends 51 are suitable for occasions with the installation positions being deeper from the liquid level.

    Example 5

    [0054] The self-aspirating and gas-liquid dispersing impellers are provided, as shown in FIG. 1 to FIG. 4. This example is specifically implemented on the basis of example 1, as shown in FIG. 4. The upper curved surfaces 41 close to the directions of the liquid facing surfaces 46 gradually slope towards the horizontal plane. The upper curved surfaces 41 close to the directions of the liquid backing surfaces 45 form an inclination angle of 40 degrees with a horizontal plane. The lower curved surfaces 42 close to the directions of the liquid facing surfaces 46 form an inclination angle of 25 degrees with a horizontal plane. The lower curved surfaces 42 close to the directions of the liquid backing surfaces 45 gradually slope towards the horizontal plane.

    [0055] The liquid facing surfaces 46 are configured to guide liquid to enter the plurality of blades 4. An angle between the liquid facing surface 46 and the plane of the disc 3 is 70 degrees. The liquid backing surfaces 45 may eliminate the cavitation effect. The upper curved surface 41 and the corresponding lower curved surface 42 converge on the corresponding liquid backing surface 45. Preferably, the upper curved surface 41 and the corresponding lower curved surface 42 converge on one straight line in the direction of the corresponding liquid backing surface 45. The two sides of the liquid backing surface 45 have the same inclination. The two sides of the liquid facing surface 46 have the same inclination.

    [0056] The rotary cavity 50 includes a cylindrical cavity 48 and a truncated cone cavity 47. The diameter d.sub.T of the outer side end face of the rotary cavity 50 is 40 mm. The ratio of the diameter d.sub.T of the outer side end face to the diameter d.sub.C of the inner side end face of the rotary cavity 50 is 0.70. The ratio of the length L.sub.1+L.sub.2 of the rotary cavity 50 to the diameter d.sub.C of the inner side end face is 1.375. The diameter of the end face (namely the diameter of the inner side end face) of the side, close to the stirring shaft 1, of the truncated cone cavity 47 is the same as the diameter of the corresponding cylindrical cavity 48. The ratio of the height L.sub.2 of the truncated cone cavity 47 to the diameter d.sub.C of the inner side end face of the corresponding rotary cavity 50 is 0.375. The length of each of the plurality of blades 4 is slightly greater than the length L.sub.1+L.sub.2 of the corresponding rotary cavity 50. The ratio of the width W of each of the plurality of blades 4 to the length L.sub.1+L.sub.2 of the corresponding rotary cavity 50 is 1.4.

    [0057] A liquid inlet channel 49 is formed in each of the plurality of blades 4 in the direction of the corresponding liquid facing surface 46, and tangentially communicates with the corresponding rotary cavity 50. The cross-sectional area of the end, close to the corresponding liquid facing surface 46, of the liquid inlet channel 49 is greater than that of the end close to the corresponding rotary cavity 50. The height H.sub.W of the end, positioned on the corresponding liquid facing surface 46, of the liquid inlet channel 49 is 0.3 of the diameter d.sub.C of the inner side end face. The height H.sub.L of the end, close to the corresponding cylindrical cavity 48, of the liquid inlet channel 49 is 0.15 of the diameter d.sub.C of the inner side end face of the corresponding cylindrical cavity. The length L.sub.3 of the transverse vertical section of the liquid inlet channel 49 is smaller than the length L.sub.1 of the corresponding cylindrical cavity 48. The ratio of the length of the transverse vertical section of the liquid inlet channel to the length of the corresponding cylindrical cavity is 0.7.

    [0058] One end of the gas inlet channel 31 is connected to the hollow stirring shaft 1 by means of the disc 3 and the hub 2. The other end of the gas inlet channel 31 is connected to the insides of the rotary cavity 50 of the plurality of blades 4. The ratio of the diameter of the gas inlet channel 31 to the diameter of the outer side end face of the rotary cavity 50 is 0.15.

    [0059] The disc 3 is perpendicular to the stirring shaft 1. The inner side and the outer side of the disc are respectively connected to the hub 2 and the plurality of blades 4. The gas inlet channel 31 is formed in the disc 3. The outer side of the disc 3 is directly welded to the plurality of blades 4.

    [0060] The total diameter of the impeller is 200 mm. The number of the plurality of blades 4 is four. The plurality of blades 4 are evenly distributed along the circumference of the disc 3. The plurality of blades 4 are arranged in a pushed-down manner. The diameter d.sub.b of the disc 3 is 90 mm. The projections of the upper curved surfaces 41 and the lower curved surfaces 42 of the plurality of blades 4 in the plane of the disc 3 are rectangular.

    [0061] A conventional four-blade Bakker Turbine (BT-4 for short) and a four-blade Rushton Turbine (RT-4 for short) are used as a contrast to compare with the case of the disclosure. The main body sizes of BT-4 and RT-4 are as follows: the whole size is 200 mm, the diameter of the disc is 120 mm, the length of each of the plurality of blades is 55 mm, and the size of the hub is consistent with that of the impeller of the disclosure. The height of each of the plurality of blades of RT-4 is 40 mm. The thickness of each of the plurality of blades is 2 mm. The height of each of the plurality of blades of BT-4 is 40 mm. The thickness of each of the plurality of blades is 2 mm. The circumferential vertical section of each of the plurality of blades is in a parabola shape. The width of the upper half part of the parabola is 40 mm. The height of the upper half part of the parabola is 22 mm. The width of the lower half part of the parabola is 30 mm. The height of the lower half part of the parabola is 18 mm.

    [0062] The three impeller blades have the operation conditions that the diameter of a stirring tank is 600 mm, the linear velocity of the tip of each of the plurality of blades is 5.0 m/s, the experiment is carried out in a water-air system, and air flow is 150 L/min. The results of analysis measurement of oxygen transfer efficiency show that the oxygen transfer efficiency of the impeller in example 5 is improved by 18% and 32% compared with the conventional BT-4 and RT-4, which shows that the impeller blade in example 5 shows good oxygen transfer performance.

    [0063] The operation conditions of the self-aspirating and gas-liquid dispersing impellers provided by the disclosure are as follows: the linear speed of the tip of each of the plurality of blades 4 is greater than 2.0 m/s. The maximum size of solid particles is smaller than the lowest height of the liquid inlet channel 49. The gas-liquid mass transfer rate and efficiency of the impeller in the operation process are closely related to gas-liquid flow ratio and liquid property. Liquid flow is mainly adjusted by means of stirring rotation speed. Gas flow rate is pre-adjusted by means of the diameter dg of the gas inlet channel 31 and the gas inlet valve mounted on the stirring shaft 1.

    [0064] Although the disclosure has been described in detail with reference to the foregoing examples, it will be apparent to those skilled in the art that the technical solutions described in the foregoing examples can still be modified, or part of technical characteristics of the technical solutions can be equivalently replaced, and any modification, equivalent replacement, improvement and the like within the spirit and principle of the disclosure should be included in the scope of protection of the disclosure.