Solder alloys and arrangements
09735126 · 2017-08-15
Assignee
Inventors
- Manfred Mengel (Bad Abbach, DE)
- Alexander Heinrich (Regensburg, DE)
- Steffen Orso (Reutlingen, DE)
- Thomas Behrens (Wenzenbach, DE)
- Oliver Eichinger (Regensburg, DE)
- Lim Fong (Melaka, MY)
- Evelyn Napetschnig (Diex, AT)
- Edmund Riedl (Obertraubling, DE)
US classification
- 1/1
Cpc classification
H01L2924/00012
ELECTRICITY
C22C18/04
CHEMISTRY; METALLURGY
H01L2924/00011
ELECTRICITY
H01L2924/01322
ELECTRICITY
H01L2924/01322
ELECTRICITY
H01L2924/00
ELECTRICITY
B23K35/3013
PERFORMING OPERATIONS; TRANSPORTING
H01L2924/00
ELECTRICITY
B23K35/282
PERFORMING OPERATIONS; TRANSPORTING
H01L2924/00014
ELECTRICITY
B23K35/262
PERFORMING OPERATIONS; TRANSPORTING
H01L2924/00014
ELECTRICITY
H01L2924/00012
ELECTRICITY
H01L2224/92247
ELECTRICITY
H01L2924/00011
ELECTRICITY
H01L2224/92247
ELECTRICITY
H01L2224/45014
ELECTRICITY
B23K1/0016
PERFORMING OPERATIONS; TRANSPORTING
H01L24/73
ELECTRICITY
H01L2224/48465
ELECTRICITY
International classification
B23K35/26
PERFORMING OPERATIONS; TRANSPORTING
B23K35/28
PERFORMING OPERATIONS; TRANSPORTING
B23K35/30
PERFORMING OPERATIONS; TRANSPORTING
B23K1/00
PERFORMING OPERATIONS; TRANSPORTING
C22C18/04
CHEMISTRY; METALLURGY
Abstract
A solder alloy is providing, the solder alloy including zinc, aluminum, magnesium and gallium, wherein the aluminum constitutes by weight 8% to 20% of the alloy, the magnesium constitutes by weight 0.5% to 20% of the alloy and the gallium constitutes by weight 0.5% to 20% of the alloy, the rest of the alloy including zinc.
Claims
1. An arrangement comprising, a chip having a chip back side; a substrate comprising a surface; a zinc-based solder alloy configured to attach the chip back side to the surface of the substrate, wherein the zinc-based solder alloy consists essentially of: zinc, aluminum and germanium, wherein the aluminum constitutes by weight 1% to 20% of the alloy, the germanium constitutes by weight 1% to 20% of the alloy, and zinc; wherein the surface of the substrate comprises a metal layer disposed between the substrate and the zinc-based solder alloy that provides a good wettability of the zinc-based solder alloy on the surface of the substrate, the zinc-based solder alloy being disposed between the metal layer and the chip back side.
2. The arrangement according to claim 1, wherein the zinc-based solder alloy is represented by a chemical formula selected from a group consisting of: ZnAl.sub.5Ge.sub.3; ZnAl.sub.12Ge.sub.3; ZnAl.sub.6Ge.sub.3; and ZnAl.sub.6Ge.sub.5.
3. The arrangement according to claim 1, wherein the substrate is a lead frame.
4. The arrangement according to claim 1, wherein the substrate is formed by a material selected from a group of materials consisting of: copper; nickel; silver; and a ceramic.
5. The arrangement according to claim 1, wherein the metal layer comprises at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, phosphorus, silver, nickel, nickel phosphorus at least one of in elemental form; in nitride form; and in oxide form, the at least one from said group of materials, individually, or in combination.
6. The arrangement according to claim 1, wherein the metal layer comprises a thickness in the range from about 100 nm to about 3 μm.
7. The arrangement according to claim 1, wherein the chip back side comprises a chip back side metallization.
8. The arrangement according to claim 7, wherein the chip back side metallization comprises at least one from the following group of materials: aluminum, titanium, nickel vanadium, and silver.
9. The arrangement according to claim 7, wherein the chip back side metallization comprises a multilayer system.
10. The arrangement according to claim 9, wherein the multilayer system comprises a contact layer to contact to a semiconductor material of the chip back side.
11. The arrangement according to claim 10, wherein the contact layer comprises an aluminum contact layer.
12. The arrangement according to claim 10, wherein the contact layer has a thickness ranging from 50 nm to 1000 nm.
13. The arrangement according to claim 9, wherein the multilayer system comprises a barrier layer.
14. The arrangement according to claim 13, wherein the barrier layer comprises one of a titanium barrier layer or a titanium-tungsten barrier layer.
15. The arrangement according to claim 13, wherein the barrier layer has a thickness ranging from 50 nm to 1000 nm.
16. The arrangement according to claim 9, wherein the multilayer system comprises a solder reaction layer.
17. The arrangement according to claim 16, wherein the solder reaction layer comprises at least one of a group of the following elements and/or alloys thereof: nickel, nickel-vanadium, silver, aluminum, gold, platinum, and palladium.
18. The arrangement according to claim 16, wherein the solder reaction layer comprises a thickness ranging from 50 nm to 1000 nm.
19. The arrangement according to claim 16, wherein the multilayer system further comprises an oxidation protection layer to prevent oxidation of the solder reaction layer.
20. The arrangement according to claim 19, wherein the oxidation protection layer comprises a thickness ranging from 50 nm to 1000 nm.
21. An arrangement comprising, a chip having a chip back side; a substrate comprising a surface; a zinc-based solder alloy configured to attach the chip back side to the surface of the substrate, wherein the zinc-based solder alloy consists essentially of: aluminum constituting by weight 1% to 20% of the alloy, germanium constituting by weight 1% to 20% of the alloy, at least one of: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, or tantalum, constituting by weight 0.001% to 10% of the alloy, and the balance of the alloy zinc; wherein the surface of the substrate comprises a metal layer disposed between the substrate and the zinc-based solder alloy that provides a good wettability of the zinc-based solder alloy on the surface of the substrate, the zinc-based solder alloy being disposed between the metal layer and the chip back side.
22. The arrangement according to claim 21, wherein the substrate is formed by a material selected from a group of materials consisting of: copper; nickel; silver; lead; and a ceramic.
23. The arrangement according to claim 21, wherein the metal layer comprises at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, phosphorus, silver, nickel, nickel phosphorus at least one of in elemental form; in nitride form; and in oxide form, the at least one from said group of materials, individually, or in combination.
24. The arrangement according to claim 21, wherein the chip back side comprises a chip back side metallization.
25. The arrangement according to claim 24, wherein the chip back side metallization comprises a multilayer system.
Description
BRIEF DESCRIPTION OF THE DRAWINGS
(1) In the drawings, like reference characters generally refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the invention are described with reference to the following drawings, in which:
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
DETAILED DESCRIPTION
(16) The following detailed description refers to the accompanying drawings that show, by way of illustration, specific details and embodiments in which the invention may be practiced. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration”. Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs.
(17) Various embodiments provide a lead-free (Pb-free) multilayer solder connection system for electronic components, including at least one side of a chip, a solder connection, e.g. a solder alloy, a carrier, e.g. a lead frame, and a plating, e.g. a lead frame plating, formed over the carrier.
(18) In comparison to lead-based solders, zinc-based solder systems have better physical characteristics, e.g. better thermal/heat and electrical conductivity. This can be seen from
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26) Solder alloy 810 may be used for joining chip back side 820 to carrier 802, e.g. a lead frame, even if chip 814 is not a silicon-based chip. Chip back side 820 may include a backside metallization 816 system including a multilayer system or part or a variant of a multilayer system. The multilayer system may include individual layers having individual functions.
(27) The multilayer system may include contact layer 816a for contacting to a semiconductor material, e.g. an aluminum contact layer, wherein the aluminum forms a layer having a thickness ranging from 50 nm to 1000 nm.
(28) The multilayer system may include barrier layer 816b, e.g. a titanium (Ti) or titanium-tungsten (TiW) barrier layer, wherein barrier layer 816b may have a thickness ranging from 50 nm to 1000 nm.
(29) The multilayer system may include solder reaction layer 816c, the solder reaction layer 816c including at least one of a group of the following elements and/or alloys thereof: nickel, nickel-vanadium, silver, aluminum, gold, platinum, palladium, nickel, wherein the solder reaction layer 816c may have a thickness ranging from 50 nm to 1000 nm. Solder reaction layer 816c may be a “partner” layer with solder alloy 810 as the thickness of solder reaction layer 816c may be selected so that during the solder process it does not dissolve completely in solder alloy 810.
(30) The multilayer system may include oxidation protection layer 816d to prevent oxidation of the solder reaction layer 816c as solder reaction layers 816c including silver, gold, platinum, palladium or alloys thereof, may be prone to oxidation. Oxidation protection layer 816d may have a thickness ranging from 50 nm to 1000 nm.
(31) Substrate 802 may be formed from one of the following group of materials: copper, nickel, silver or a ceramic. Plating 806 may be formed over substrate 802, e.g. substrate 802 may be a lead frame wherein lead frame plating may be formed over the lead frame. Plating 806 may include at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, phosphorus, silver, nickel, nickel phosphorus in elemental form and/or in nitride form and/or in oxide form, the at least one from said group of materials, individually, or in combination. Plating 806 may be configured to be in connection with solder alloy 810.
(32) According to various embodiments, substrate 802 may include plating 806 including copper in combination with nickel and/or nickel phosphorus, wherein plating 806 may be a lead frame plating configured to be in connection with the solder alloy. According to various embodiments, plating 806 thickness may lie in the range from about 100 nm to about 3 μm.
(33) According to various embodiments, chip 814 may include chip back side 820 including at least one from the following group of materials: aluminum, titanium, nickel vanadium, silver, wherein chip back side 820 may be configured to be in connection with solder alloy 810.
(34) Solder alloy 810A according to various embodiments may include zinc, aluminum, magnesium and gallium, wherein aluminum constitutes by weight 8% to 20% of alloy 810A, magnesium constitutes by weight 0.5% to 20% of alloy 810A and gallium constitutes by weight 0.5% to 20% of alloy 810A, the rest of alloy 810A including zinc. Solder alloy 810A may be represented by the chemical formula ZnAl.sub.4.5Ga.sub.1Mg.sub.1. Solder alloy 810A may be represented by the chemical formula ZnAl.sub.12Ga.sub.1Mg.sub.1. According to various embodiments, solder alloy 810A may be a solder wire. Aluminum may constitute by weight 3% to 12% of alloy 810A. Magnesium may constitute by weight 0.5% to 4% of alloy 810A. Gallium may constitute by weight 0.5% to 4% of alloy 810A.
(35) Solder alloy 810B according to various embodiments may include zinc, aluminum, tin and magnesium, wherein aluminum constitutes by weight 1% to 30% of alloy 810B, magnesium constitutes by weight 0.5% to 20% of alloy 810B and tin constitutes by weight 0.5% to 6.5% of alloy 810B, the rest of alloy 810B including zinc. Aluminum may constitute by weight 3% to 8% of alloy 810B. Magnesium may constitute by weight 0.5% to 4% of alloy 810B. Tin may constitute by weight 0.5% to 4% of alloy 810B. Solder alloy 810B may be represented by the chemical formula ZnAl.sub.4Sn.sub.2Mg.sub.1.
(36) Solder alloy 810C according to various embodiments may include zinc, aluminum, germanium and gallium, wherein aluminum constitutes by weight 1% to 30% of alloy 810C, germanium constitutes by weight 0.5% to 20% of alloy 810C and gallium constitutes by weight 0.5% to 20% of alloy 810C, the rest of alloy 810C including zinc. Aluminum may constitute by weight 3% to 8% of alloy 810C. Germanium may constitute by weight 0.5% to 4% of alloy 810C. Gallium may constitute by weight 0.5% to 4% of alloy 810C.
(37) Solder alloy 810D according to various embodiments may include zinc, aluminum and germanium, wherein aluminum constitutes by weight 1% to 20% of alloy 810D, germanium constitutes by weight 1% to 20% of alloy 810D, the rest of alloy 810D including zinc. Solder alloy 810D may be represented by the chemical formula ZnAl.sub.5Ge.sub.3. Solder alloy 810D may be represented by the chemical formula ZnAl.sub.12Ge.sub.3. Solder alloy 810D may be represented by the chemical formula ZnAl.sub.6Ge.sub.3. Solder alloy may be represented by the chemical formula ZnAl.sub.6Ge.sub.5. According to various embodiments, aluminum may constitute by weight 3% to 8% of alloy 810D. According to various embodiments, germanium may constitute by weight 1% to 6% of alloy 810D.
(38) Solder alloy 810E according to various embodiments, may include zinc, aluminum and magnesium, wherein aluminum constitutes by weight 1% to 20% of alloy 810E, magnesium constitutes by weight 1% to 20% of alloy 810E, the rest of alloy 810E including zinc. Aluminum may constitute by weight 3% to 8% of alloy 810E. Magnesium may constitute by weight 0.5% to 4% of alloy 810E.
(39) Solder alloy 810F according to various embodiments may include zinc and tin, wherein zinc constitutes by weight 10% to 91% of alloy 810F. Solder alloy 810F may be represented by the chemical formula Zn.sub.40Sn.sub.60. Zinc may constitute by weight 10% to 15% of alloy 810F.
(40) Solder alloy 810G according to various embodiments may include zinc and silver, wherein zinc constitutes by weight 26% to 98% of alloy 810G. Zinc may constitute by weight 83% to 99% of alloy 810G.
(41) Solder alloy 810H according to various embodiments may include zinc and copper, wherein zinc constitutes by weight 80% to 98% of alloy 810H. Zinc may constitute by weight 88% to 99% of alloy 810H.
(42) According to an embodiment, each of solder alloys 810A to 810H may further include at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, each and/or in combination including by weight 0.001% to 10% of alloys 810A to 810H.
(43)
(44)
(45)
(46)
(47)
(48)
(49) DSC plot 1236 shows Heat flow (W/g) 1238 versus Temperature (° C.) 1240 with respect to solder alloy 810A having chemical formula ZnAl.sub.12Ga.sub.1Mg.sub.1 according to an embodiment. Solder alloy 810A shows exothermic peaks at approximately 273° C., 344° C. Thus, a melting point of approximately 344° C. may be attained in solder alloy 810A having chemical formula ZnAl.sub.12Ga.sub.1Mg.sub.1. The peak representing an enthalpy of 24.4 J/g and peak temperature 272.6° C. reflects an eutectoid reaction between zinc and aluminum. Any further peaks at higher temperatures are created by ternary reactions of Zn—Al with a further alloy element of the alloy, e.g. Ga, Mg.
(50)
(51)
(52) DSC plot 1436 shows Heat flow (W/g) 1438 versus Temperature (° C.) 1440 with respect to solder alloy 810D having chemical formula ZnAl.sub.12Ge.sub.3 according to various embodiments. Solder alloy 810D shows exothermic peaks at approximately 283° C., 359 C, 368° C. and 412° C. The peak representing an enthalpy of 24.4 J/g and peak temperature 282.8° C. reflects an eutectoid reaction between zinc and aluminum. Any further peaks at higher temperatures are created by ternary reactions of Zn—Al with a further alloy element of the alloy, e.g. Ge.
(53)
(54)
(55) In various embodiments, a solder alloy is provided. The solder alloy may include zinc, aluminum, magnesium and gallium, wherein the aluminum constitutes by weight 8% to 20% of the alloy, the magnesium constitutes by weight 0.5% to 20% of the alloy and the gallium constitutes by weight 0.5% to 20% of the alloy, the rest of the alloy including zinc. In various embodiments, the solder alloy may be represented by the chemical formula ZnAl.sub.4.5Ga.sub.1Mg.sub.1. In various embodiments, the solder alloy may be represented by the chemical formula ZnAl.sub.12Ga.sub.1Mg.sub.1. In various embodiments, the solder alloy may be a solder wire. In various embodiments, the aluminum may constitute by weight 3% to 12% of the alloy. In various embodiments, the magnesium may constitute by weight 0.5% to 4% of the alloy. In various embodiments, the gallium may constitute by weight 0.5% to 4% of the alloy. In various embodiments, the alloy may further include at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, each and/or in combination comprising by weight 0.001% to 10% of the alloy.
(56) In various embodiments, a solder alloy is provided. The solder alloy may include zinc, aluminum, tin and magnesium, wherein the aluminum constitutes by weight 1% to 30% of the alloy, the magnesium constitutes by weight 0.5% to 20% of the alloy and the tin constitutes by weight 0.5% to 6.5% of the alloy, the rest of the alloy including zinc. In various embodiments, the aluminum may constitute by weight 3% to 8% of the alloy. In various embodiments, the magnesium may constitute by weight 0.5% to 4% of the alloy. In various embodiments, the tin may constitute by weight 0.5% to 4% of the alloy. In various embodiments, the solder alloy may be represented by the chemical formula ZnAl.sub.4Sn.sub.2Mg.sub.1. In various embodiments, the alloy may further include at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, each and/or in combination including by weight 0.001% to 10% of the alloy.
(57) In various embodiments, a solder alloy is provided. The solder alloy may include zinc, aluminum, germanium and gallium, wherein the aluminum constitutes by weight 1% to 30% of the alloy, the germanium constitutes by weight 0.5% to 20% of the alloy and the gallium constitutes by weight 0.5% to 20% of the alloy, the rest of the alloy including zinc. In various embodiments, the aluminum may constitute by weight 3% to 8% of the alloy. In various embodiments, the germanium may constitute by weight 0.5% to 4% of the alloy. In various embodiments, the gallium may constitute by weight 0.5% to 4% of the alloy. In various embodiments, the alloy may further include at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, each and/or in combination including by weight 0.001% to 10% of the alloy.
(58) In various embodiments, an arrangement is provided. The arrangement may include a chip; a solder alloy configured to attach the chip to a lead frame; the solder alloy including: zinc, aluminum and germanium, wherein the aluminum constitutes by weight 1% to 20% of the alloy, the germanium constitutes by weight 1% to 20% of the alloy, the rest of the alloy including zinc. In various embodiments, the solder alloy may be represented by the chemical formula ZnAl.sub.5Ge.sub.3. In various embodiments, the solder alloy may be represented by the chemical formula ZnAl.sub.12Ge.sub.3. In various embodiments, the solder alloy is represented by the chemical formula ZnAl.sub.6Ge.sub.3. In various embodiments, the solder alloy may be represented by the chemical formula ZnAl.sub.6Ge.sub.5. In various embodiments, the aluminum may constitute by weight 3% to 8% of the alloy. In various embodiments, the germanium may constitute by weight 1% to 6% of the alloy. In various embodiments, the alloy may further include at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, each and/or in combination including by weight 0.001% to 10% of the alloy. In various embodiments, the lead frame may include a lead frame plating including at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, phosphorus, silver, nickel, nickel phosphorus in elemental form and/or in nitride form and/or in oxide form, the at least one from said group of materials, individually, or in combination comprising the lead frame plating; wherein the lead frame plating is configured to be in connection with the solder alloy. In various embodiments, the lead frame may include a lead frame plating including copper in combination with nickel and/or nickel phosphorus; wherein the lead frame plating is configured to be in connection with the solder alloy. In various embodiments, the lead frame plating thickness lies between 100 nm to 3 μm. In various embodiments, the chip may include a chip back side including at least one from the following group of materials: aluminum, titanium, nickel vanadium, silver, wherein the chip back side is configured to be in connection with the solder alloy.
(59) In various embodiments, an arrangement is provided. The arrangement may include a chip; a solder alloy for attaching the chip to a lead frame; the solder alloy including zinc, aluminum and magnesium, wherein the aluminum constitutes by weight 1% to 20% of the alloy, the magnesium constitutes by weight 1% to 20% of the alloy, the rest of the alloy including zinc. In various embodiments, the aluminum may constitute by weight 3% to 8% of the alloy. In various embodiments, the magnesium may constitute by weight 0.5% to 4% of the alloy. In various embodiments, the alloy may further include at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, each and/or in combination including by weight 0.001% to 10% of the alloy. In various embodiments, the lead frame may include a lead frame plating including at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, phosphorus, silver, nickel, nickel phosphorus in elemental form and/or in nitride form and/or in oxide form, the at least one from said group of materials, individually, or in combination including the lead frame plating; wherein the lead frame plating is configured to be in connection with the solder alloy. In various embodiments, the lead frame may include a lead frame plating including copper in combination with nickel and/or nickel phosphorus; wherein the lead frame plating is configured to be in connection with the solder alloy. In various embodiments, the lead frame plating thickness lies between 100 nm to 3 μm. In various embodiments, the chip may include a chip back side including at least one from the following group of materials: aluminum, titanium, nickel vanadium, silver; wherein the chip back side is configured to be in connection with the solder alloy.
(60) In various embodiments, an arrangement is provided. The arrangement may include a chip; a solder alloy configured to attach the chip to a lead frame; the solder alloy including zinc and tin, wherein the zinc constitutes by weight 10% to 91% of the alloy. In various embodiments, the solder alloy may be represented by the chemical formula Zn.sub.40Sn.sub.60. In various embodiments, the zinc may constitute by weight 10% to 15% of the alloy. In various embodiments, the alloy may further include at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, each and/or in combination including by weight 0.001% to 10% of the alloy. In various embodiments, the lead frame may include a lead frame plating including at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, phosphorus, silver, nickel, nickel phosphorus in elemental form and/or in nitride form and/or in oxide form, the at least one from said group of materials, individually, or in combination including the lead frame plating; wherein the lead frame plating is configured to be in connection with the solder alloy. In various embodiments, the lead frame may include a lead frame plating including copper in combination with nickel and/or nickel phosphorus; wherein the lead frame plating is configured to be in connection with the solder alloy. In various embodiments, the lead frame plating thickness lies between 100 nm to 3 μm. In various embodiments, the chip may include a chip back side including at least one from the following group of materials: aluminum, titanium, nickel vanadium, silver; wherein the chip back side is configured to be in connection with the solder alloy.
(61) In various embodiments, an arrangement is provided. The arrangement may include a chip; a solder alloy configured to attach the chip to a lead frame; the solder alloy including zinc and silver, wherein the zinc constitutes by weight 26% to 98% of the alloy. In various embodiments, the zinc may constitute by weight 83% to 99% of the alloy. In various embodiments, the alloy may further include at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, each and/or in combination including by weight 0.001% to 10% of the alloy. In various embodiments, the lead frame may include a lead frame plating including at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, phosphorus, silver, nickel, nickel phosphorus in elemental form and/or in nitride form and/or in oxide form, the at least one from said group of materials, individually, or in combination including the lead frame plating; wherein the lead frame plating is configured to be in connection with the solder alloy. In various embodiments, the lead frame may include a lead frame plating comprising copper in combination with nickel and/or nickel phosphorus; wherein the lead frame plating is configured to be in connection with the solder alloy. In various embodiments, the lead frame plating thickness lies between 100 nm to 3 μm. In various embodiments, the chip may include a chip back side including at least one from the following group of materials: aluminum, titanium, nickel vanadium, silver; wherein the chip back side is configured to be in connection with the solder alloy.
(62) In various embodiments, an arrangement is provided. The arrangement may include a chip; a solder alloy configured to attach the chip to a lead frame; the solder alloy including zinc and copper, wherein the zinc constitutes by weight 80% to 98% of the alloy. In various embodiments, the zinc may constitute by weight 88% to 99% of the alloy. In various embodiments, the alloy may further include at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, each and/or in combination including by weight 0.001% to 10% of the alloy. In various embodiments, the lead frame may include a lead frame plating including at least one from the following group of materials: silver, gold, nickel, platinum, palladium, vanadium, molybdenum, tin, copper, arsenic, antimony, gallium, zinc, aluminum, niobium, tantalum, phosphorus, silver, nickel, nickel phosphorus in elemental form and/or in nitride form and/or in oxide form, the at least one from said group of materials, individually, or in combination including the lead frame plating; wherein the lead frame plating is configured to be in connection with the solder alloy. In various embodiments, the lead frame may include a lead frame plating including copper in combination with nickel and/or nickel phosphorus; wherein the lead frame plating is configured to be in connection with the solder alloy. In various embodiments, the lead frame plating thickness lies between 100 nm to 3 μm. In various embodiments, the chip may include a chip back side including at least one from the following group of materials: aluminum, titanium, nickel vanadium, silver; wherein the chip back side is configured to be in connection with the solder alloy.
(63) While the invention has been particularly shown and described with reference to specific embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. The scope of the invention is thus indicated by the appended claims and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced.